Note
Go to the end to download the full example code.
Plotting FSVM Classifier#
An example plot of fsvm.FuzzySVC
Train our classifier on very simple dataset
Create a test dataset
import numpy as np
rng = np.random.RandomState(13)
X_test = rng.rand(500, 2)
Use scikit-learn to display the decision boundary
from sklearn.inspection import DecisionBoundaryDisplay
disp = DecisionBoundaryDisplay.from_estimator(clf, X_test)
disp.ax_.scatter(
X_test[:, 0],
X_test[:, 1],
c=clf.predict(X_test),
s=20,
edgecolors="k",
linewidths=0.5,
)
disp.ax_.set(
xlabel="Feature 1",
ylabel="Feature 2",
title="FSVM Classifier Decision Boundary",
)
[Text(0.5, 23.52222222222222, 'Feature 1'), Text(30.972222222222214, 0.5, 'Feature 2'), Text(0.5, 1.0, 'FSVM Classifier Decision Boundary')]
Total running time of the script: (0 minutes 0.181 seconds)